skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ashida, Yosuke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A novel approach is proposed to reveal a secret birth of enhanced circumstellar material (CSM) surrounding a collapsing massive star using neutrinos as a unique probe. In this scheme, nonthermal TeV-scale neutrinos produced in ejecta–CSM interactions are tied with thermal MeV neutrinos emitted from a pre-explosion burning process, based on a scenario that CSM had been formed via the presupernova activity. Taking a representative model of the presupernova neutrinos, the spectrum and light curve of the corresponding high-energy CSM neutrinos are calculated at multiple mass-loss efficiencies, which are considered as a systematic uncertainty. In addition, as a part of the method demonstration, the detected event rates along time at JUNO and IceCube, as representative detectors, are estimated for the presupernova and CSM neutrinos, respectively, and are compared with the expected background rate at each detector. The presented method is found to be reasonably applicable for the range up to ∼1 kpc and even farther with future experimental efforts. The potentialities of other neutrino detectors, such as SK-Gd, Hyper-Kamiokande, and KM3NeT, are also discussed. This is a pioneering work of performing astrophysics with neutrinos from diverse energy regimes, initiating multienergy neutrino astronomy in the forthcoming era where next-generation large-scale neutrino telescopes are operating. 
    more » « less
    Free, publicly-accessible full text available March 21, 2026
  2. Abstract The flux spectrum, event rate, and experimental sensitivity are investigated for the diffuse supernova (SN) neutrino background (DSNB), which originates from past stellar collapses and is also known as a supernova relic neutrino background. For this purpose, the contribution of collapses that lead to successful supernova explosion and black hole (BH) formation simultaneously, which are suggested to be a nonnegligible population from the perspective of Galactic chemical evolution, is taken into account. If the BH-forming SNe involve matter fallback onto the protoneutron star for the long term, their total emitted neutrino energy becomes much larger than that of ordinary SNe and failed SNe (BH formation without explosion). Then, in the case of the normal mass hierarchy in neutrino oscillations and with half of all core-collapse SNe being BH-forming SNe, the expected event rate according to the current DSNB model is enhanced by up to a factor of 2 due to the BH-forming SNe. While substantial uncertainties exist regarding the duration of the matter fallback, which determines the total amount of emitted neutrinos, and the fraction of BH-forming SNe, the operation time required to detect the DSNB at Hyper-Kamiokande would be reduced by such contribution in any case. 
    more » « less
  3. Abstract. The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole. It uses 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. An unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. We examine birefringent light propagation through the polycrystalline ice microstructure as a possible explanation for this effect. The predictions of a first-principles model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties include not only the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube light-emitting diode (LED) calibration data, the theory and parameterization of the birefringence effect, the fitting procedures of these parameterizations to experimental data, and the inferred crystal properties. 
    more » « less